Improving Nearest Neighbor Rule with a Simple Adaptive Distance Measure

نویسندگان

  • Jigang Wang
  • Predrag Neskovic
  • Leon N. Cooper
چکیده

The k-nearest neighbor rule is one of the simplest and most attractive pattern classification algorithms. However, it faces serious challenges when patterns of different classes overlap in some regions in the feature space. In the past, many researchers developed various adaptive or discriminant metrics to improve its performance. In this paper, we demonstrate that an extremely simple adaptive distance measure significantly improves the performance of the k-nearest neighbor rule. 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving nearest neighbor classification with cam weighted distance

Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...

متن کامل

A Statistical Confidence-Based Adaptive Nearest Neighbor Algorithm for Pattern Classification

The k-nearest neighbor rule is one of the simplest and most attractive pattern classification algorithms. It can be interpreted as an empirical Bayes classifier based on the estimated a posteriori probabilities from the k nearest neighbors. The performance of the k-nearest neighbor rule relies on the locally constant a posteriori probability assumption. This assumption, however, becomes problem...

متن کامل

Submitted to CVPR ' 99 Bayesian based Optimal Nearest Neighbor

Nearest neighbor rules are popular classiiers, partly due to their good asymptotic properties. Improving the performance of NN rules when only nite samples are available has been studied over the last two decades. For example, smart distance measures which are data dependent have been proposed. From a theoretical point of view, one is interested in deriving the optimal NN distance measure. Exis...

متن کامل

A New Distance-weighted k-nearest Neighbor Classifier

In this paper, we develop a novel Distance-weighted k -nearest Neighbor rule (DWKNN), using the dual distance-weighted function. The proposed DWKNN is motivated by the sensitivity problem of the selection of the neighborhood size k that exists in k -nearest Neighbor rule (KNN), with the aim of improving classification performance. The experiment results on twelve real data sets demonstrate that...

متن کامل

The Optimal Distance Measure for Object Detection

We develop a multi-class object detection framework whose core component is a nearest neighbor search over object part classes. The performance of the overall system is critically dependent on the distance measure used in the nearest neighbor search. A distance measure that minimizes the mis-classification risk for the 1-nearest neighbor search can be shown to be the probability that a pair of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006